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Abstract :

Mostly the statistical methods depend on hypothesis that probability distribution for data of regression
model is normal, but in applied state at most to be this data have other distributions because of the extreme
values, in order to use methods are not sensitive to extreme values. And give efficient estimations such as
robust estimation Methods.in this work used some (classical and robust) methods which are (OLS, WLS, M-
estimator, LTS and LMS). In this work five methods have been estimated the parameters of robust multiple
regression model .Two methods of classical methods , and three methods are robust methods , It has been
drawn simple random sample (299) patients in (shar hospital) infected with blood pressure represented by
dependent variables (BP) and independent variables (B.S, B.U,BMI,CR,CHO, and Tri.) . To aim compare between
these methods in order to find the best method for estimation by using measures reflect the quality and
efficiency of those estimates , such as mean square error (MSE) and determination factor (RZ LAIC,AlICc, BIC,MSE,
and RMSE) to measure the model efficiency « by using statistical program (JASP,SPSS26 and systa12 ). The
results show that the method of WLS is the best and secondly method is LTM among of all robust method .

Either the classical (OLS) methods has demonstrated its failure to estimate efficient estimators.

Keywords: Estimation Method, Robustness, Influence function, WLS method, Best criteria.
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Aim of research:

1. Comparison between several methods.
2. Choosing best models

1- Introduction:

It is known as that the estimation in statistical methods depends on a number of important assumptions.To
obtain an accurate regression model, the probability distribution of the data is the most important hypothesis
that is under study, which is often distributed normally.Sometimes the distributed data takes a different
pattern and may not be represented by a particular pattern of distributions Which leads to (outliers)
distributions, and the reason may sometimes be due to the presence of extreme values not checking the least
squares hypotheses, and then they will lose their good properties, and so we do Searching for alternative,
immunized ways to address this problem and that are insensitive to the presence of extreme values and give
us efficient estimators . In this work, some types of classical estimation methods will be used .Ordinary least
squares (OLS) and the weighted least squares method (WLS) ,compare it with the some robust estimation
methods such as M-estimation method, Least median squares method (LMS), Least trimmed squares method
(LTS) to find the best estimation of the parameters of the multiple regression model. r7.22)

4. Methods of Estimation:

The main purpose of the estimation methods is to obtain the estimations of the parameters of the model it
must have good specifications that make it a model that can be used and used Estimation methods are different
according to different ideas and methods to achieve two important purposes.The first is to contain the
capabilities are on good specifications, and the other purpose is to show the method in an easy-to-implement
manner. There are several methods for estimating the parameters of the regression model, and these methods
give good results when there are regression hypotheses, but when one of these hypotheses is violated or when
there are extreme values, these the methods will lose their advantages and will negatively affect the results of

[19,24]
the assessment.

4.1.1- ordinary least square method (OLS method) [1,5,9,12]:

This method is one of the most widely used methods for estimating the parameters of the linear regression

model. The least squares estimate of the regression parameters in this method . The goal is predicting the

Zn:giz

unknown parameters by minimize ( = ). The intention is to select the parameters that the residuals are
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"small.” While there are various methods with which to minimize the residuals. The model can be thought of as
a similar to the slope-intercept form of a line with an error (residual) term.
The simple linear regression model is given by:
Y, = f(xi1ﬂ)+ui @
Where: yi  the response (dependent) variables with (n) of sample size.

B;

The parameters of the models.

i=12,..,n
i Explanatory (independent) variables with 1=12,...,m
Y, The error term.
We can express itin matrix formas:  yi = X@ + U (2)

For estimate the parameters of the model, there are certain hypotheses that must be met. These assumptions are:
1. The relationship between the variables involved is a linear relationship and this means that the variable y is

determined as a linear structure of independent variables, X and random variable u.

2. The variance of the random error are independent that is means:
COV(Ui,Uj)zE(Ui,Uj)=O YV i#]j 3
i,j=12,...,n
2
3. The normal error with mean zero and variance Q. U;ON(,0,7)
4. No correlated between ( Ui ) and ( Xi ), so the covariance is zero, i.e.: EU;X;)=0
E(X, Xj) =0

5. No multicollinearity between the values of the explanatory variables.
Also some properties needed in this method and these assumptions are:

The estimated parameters in this method are linear in terms of the response variables, this property called

B =(XX) XY

Linearity.
2. Second un-biasness, That is, the expected value of the estimated parameters is equal to its  real value:
E(By) =
R a4,
3. The minimum variance of the estimated parameters: var(fy,) = ( XX ) d
4.1.2-Weighted least square method (OLS method)[B'M'n]:
The ordinary least squares method assumes that there is a continuous variance in errors, so we will

resort to using the weighted least squares method when the assumptions of squares are violated. The

[ 507
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normal minimum continuous change in errors (which is called heterogeneity) and the model under
consideration
Y=Xg+U

s =(XWX) T X WY @

The equation it gives us the best-unbiased linear estimator of the parameter ( B ) in a case of
heterogeneity It is called the estimation method in the weighted least squares method .this method

generally depend on the weight.
var—cov(,,) =| o (XW*X)™* | )

The equation ( 5) give us a variance, and the var-covarince of parameters (A"’LS ) \Which contains
parameters of model when the variance is heterogeneity.

4.2--Robust Estimation:

The classical methods in estimating the parameters of the model is inaccurate in the analysis Data
when there is a defect in one of the regression hypotheses, the presence of outliers, or the error
distribution the random distribution is not the normal distribution that is suitable for the method
adopted in the estimation. One or more outliers will lead to a defect in the properties of the least
squares estimators, even if the estimator is the robust is the one that maintains the desired properties
of abilities when certain assumptions are violated. We will look at some of the following estimation
methods: [2,7,18]
4.2.1.:The General Class of M-estimators:

An estimator is often chosen as a member of a general class of estimators that is optimal in some
sense or fulfills a set of good properties .Huber (1964, 1967) proposed a class of M-estimators that
P

naturally generalize the MLE. An M-estimator is given by the solution of the minimization

n n
min >  p(x;, B) min > v (x;, B)
i=1 or, alternatively, by the solution for 0 of i=1 forsuitable ¥ and YV

functions, where:

w(x, B) = op(x; B)

op
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In general, w (X, f) needs not be the derivative of some © -function with respect to the parameter of

interest, therefore (2.73) is more general and is often ref erred as the proper definition of an M-

estimator. M-estimators include the so-called weighted MLE (WMLE) defined as the solution for B
.The weights can depend on the observations only, on a quantity that depends itself on the observations

and the parameters or, more generally, directly on the score function.In the linear regression model

!/
Yi=% 'B+8i , Var(xi) =1 . The score function has a similar expression s(y, X, B)=r.x butis

= - ! 3 - 3 . - -
proportional to r=y-xp , the residual, and x, the covariate function itself. In the univariate case,

w, (r; B,¢) = M =min{L, E}

popular choices are Huber.s weights i.e. The weightis equal to

c

one for all (small) values of rsatisfying |r|<c and I' otherwise. Note that in a regression model with

known scale, the Huber estimator is an M-estimator associated with

Wh(r,X;ﬂ,C):Wh(r,X,ﬂ,C)X

a bounded function of r (or the response y).The P and YFunctions of the

MLE and Huber proposal are depicted in Figure 1,left and middle panels.
ML ssimator MHubor axtimator 1 1.0485) Diweight setiimeior (¢ «4.66806)

AL eRtimmtor HUBee SEHMAIOF (Cw . 345) Blwmignt ssma 1Ge {©wd i)
f i ~ —f |

Figure 1
This Figure displays the P and ¥ - function for the MLE, Huber and bi-weight estimators. For the
MLE, the ¥ -function (score) and corresponding p =log(f) are unbounded .in contrast, the Huber
estimator has a score function bounded by c , and P function is quadratic in the middle and linear in

the tails. Finally the bi-weight Y _function score is re-descending with the Corresponding P _function
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being symmetric and constant for |r| ~C .as aresult the MLE are not robust, the Huber estimator is
robust. [1,11,16,19]

There are some methods for estimating the coefficients of the linear model, in this work we use two of
this method, which are:

1. Least median squares method (LMS)[4,11,20]:

The median least squares method is proposed by Rousseeuw to provide robust estimators for the
parameters in a linear regression model, by replacing the sum of squares with a residual in (ols ) and
replacing them with a median of squares with a residual .The following estimators ( LMS ) can be
obtained if optimization is achieved :

Suppose that:

X" = (X Xigr e Xip)

Where 1=123...n  j=123..p

Y, ='1023..,Y,) i=123..n

!
Where: " ' ' are two real values vectors with

NS

2P
P: numbers of variables.

X :‘xij‘

. - X . .
is full rank matrix with ( nxp ) dimensions.

v B= B Br B

vectors of parameters in the model.

And by least median squares (LMS) it is possible to find ( Biws ) according to the following formula:
n
Bius =Minmed (Y, — X'B)?
b=l ..(6)
2 _ _ ' 2
Where: & =i —X'p)
inmed (e?)
Brus =mMinmed (g;
In addition, can write the models as follow: b=
Bius :is the middle of the shortest half in a partial sample and is called the median least squares
estimator. To find an estimator in the case of a single variable of size n, one of the following partial

samples must be taken (n-h+1) as follow :
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{X(l)’ Xzyr X(h)}
{X 2y Xayror Xinony }
{X<3>- Kayreeos x(h+2>}

{X (n-hony > Knnazy o X(")} (7)

Then find the shortest half in a partial sample, and this is done by finding the smallest differences as

follows:

X~ Xw

X(h+1) - X(z)

X(h+2) - X(3)

Xm—X (n—=h+1) ...(8)
—n

Where: h=2+1 and X is order value.

And the sub-sample that represent corresponds to the smallest difference in the equation (@) and
contains (h) values is called the shortest half because it has the shortest range among all possible sub

samples with (h) elements.

And the estimator ( Biws ) is equal to the midpoint of this sub-sample that corresponds to the smallest
difference, and in the case of several equal short halves, the average of its middle is taken .

2. Least trimmed squares method (LTS):

Itis a statistical method for estimating the unknown coefficients of the linear regression model, and it is
considered a robust and alternative to the classical methods.This method was also suggested by (Rousseeuw),

because itis characterized by statistical efficiency and better positional stability than the median least squares
. . Y, X, .

method. Let us assume that the linear regression model for a sample ( ) and Response variable

Y. €R . p p

i and a vector of explanatory variables XeR%, peR .

Where: p :numbers of parameters.

By using (LTS) can obtain estimate Biws as follow:

[EZN
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h
brs :miniz_ll(ez) (3<h<n)

i, h:is constant values the range of h is .And square residual

ordered is (ez)i"
(e? )Ln s(ez)z:n <.< (ez)n:rl

The researcher suggested an estimator ( Biws ) for the location of the univariate variable of size ( n)
and taking into account (n-h+1) of the following partial samples:

{ Xy Xaayror Xy }

{X(Z)’ X(3)""’ X(h+1)}

{X<3)’ Kayse X(h+2>}

{X (n—h+1) X(n—h+2) [EERY) X(n)}

Each sample contains h elements, each sub-sample is called the contiguous half, and the average is
calculated for each partial sample as follows:
h
Xay =+ le X
=

h+1

X (2 :%; X

n
R =% 35 Xo -(10)

And calculate the sum of squares for each sub-sample:

h —
SQq) = Z(Xm - X(l))

i=1

2

h+1 _ 2
SQe) = ;(Xa) - X(Z))

N _ 2
SQ(n—thl) = i=§+l(X(i) - X(nfh+1)) (11)

The ﬂLMS

Itis the mean that corresponds to the least squared sum of last equation. [11,13,20]

3. Choosing the best estimate of the parameters of the regression model:
After we estimated the parameters of the model for each method using the classical and robust

estimation methods, we choosing the best method from among these methods, this was done by means

[322]
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of some criteria of comparison, including. In this work has many criteria are used to comparison
between models such as (R2, AIC, AICc, BIC, RMSE, and MSE).and it is calculated according to the
following formula [3,6,10,15]:

criteria Formula Descriptions
1 R2 R2 _ MSE MSE :Mean square error
MST MST :Mean square total
2 AIC AIC = —-2logL +2(k + p) Akaike Information Criterion
3 AlCc 2k?2 4+ 2k Correct Akaike Information Criterion
AlCc = AIC + ——
N-—-K-1
BIC AIC =2 |Og L+2 |Og n(k -+ p)Bayesian Information Criterion
4 MSE MSE — SSE MSE :Mean square error
d. f
5 RMSE RMSE = -/ MSE Root square of MSE :Mean square error

2.1- Data Description and analysis:

In this section, we discuss practical part and all results will be presented to the Applied of the study by
using Statistical package (JASP, SYSTAT12 and SPSS26) program. Which is characterized by ease of
handling and accuracy of its results and contains many tools that help researchers in the process of analyzing
and arriving at accurate results.

2.1.1: Data Description:

In this part, results will be presented to the applied side of the study by using a by using Statistical package
(JASP, SYSTAT12 and SPSS26) program. which is characterized by ease of handling and accuracy of its results
and contains many tools that help researchers in the process of analyzing and arriving at accurate results.
Sample taken from the (central laboratory in the sulamani ) data as an (299) patients with (In this study a
sample was taken from (299) patients suffering from hyperactive blood pressure, with six independent
variables which are {(B.S) Blood sugars, (B.U) Blood Urea, Certain, (BMI) Body mass index, (Chol.)Cholesterol,
and (Tri.) triglyceride},with (y=response) variable is the hyperactive blood pressure (BP )The goal of this study is
to determine the effect of these variables on the hyperactive blood pressure (y).

Result and analysis:
At the first by using (JASP , SYSTA13 and SPSS26 program package ), we show that the result of descriptive

statistics for all variables entered in study.

[313]
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Table (1): Represents the descriptive statistics for all variable’s

PB B.SUGEAR B.UERA BMI Certain chol tri
mean 34.30 257.70 7.08 103.83 59.76 4.97 13.94
S.Deviation 7.87 64.29 1.90 15.50 8.92 0.98 2.75
N 299 299 299 299 299 299 299

And then to determine whether there is all independent variables are affected the Dependent variable or
not, multiple regression analysis according to the (ALL) methods.

Table (2): Represents the Coefficients of OLS method

model Beta Std.Error t Sig Lower bound Upper bound
constant 102.414 3.759 27.244 0.000 95.006 109.822
B.sugaer -0.003 0.005 -0.729 0.467 -0.012 0.006
B.urea -0.141 0.161 -0.878 0.381 -0.459 0.176
BMI -0.010 0.017 -0.590 0.555 -0.044 0.024
Creatin -0.822 0.034 -23.94 0.000 -0.889 -0.754
Cholesterol -0.569 0.471 -1.208 -0.288 -1.496 0.359
Trigl. -0.950 0.177 -5.363 0.000 -1.299 -0.601

Table (3): Represents the Coefficients of WLS method

model Beta Std.Error t Sig Lower bound Upper bound
constant 83.450 2.505 33.307 0.000 95.006 109.822
B.sugaer -0.000 0.002 0.115 0.908 -0.012 0.006
B.urea -0.287 0.101 -3.544 0.004 -0.459 0.176
BMI 0.007 0.012 0.592 0.555 -0.044 0.024
Creatin -0.840 0.017 -48.96 0.000 -0.889 -0.754
Cholesterol 0.959 0.382 2.512 0.013 -1.496 0.359
Trigl. -0.280 0.136 -2.058 0.041 -1.299 -0.601
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Table (4): Represents the Coefficients of (M-Estimate-Huber) method

model Beta Std.Error t Sig Lower bound Upper bound
constant 91.147 5.753 15.843 0.0001 79.811 102.483
B.sugaer 0.001 0.006 0.166 0.867 -0.012 0013
B.urea -0.093 0216 -0.430 0.667 -0519 0332
BMI -0.002 0.022 -0.090 0927 -0.044 0.041
Creatin -0.915 0.047 -19.468 0.0001 -1.007 -0.823
Cholesterol 0136 0.643 0211 0832 1131 1.402
Trigl. -0.079 0276 -0.286 0.774 -0623 0.465

Table (5): Represents the Coefficients of (M-Estimate-Humble) method

model Beta Std.Error t Sig Lower bound Upper bound
constant 92.256 7.231 12.758 0.0001 77.997 106515
B.sugaer 0.001 0.008 0125 0.900 -0.015 0016
B.urea 0.029 0.268 0108 0914 -0.499 0.558
BMI 0.001 0.027 0.037 0.970 -0.052 0.054
Creatin -0.956 0.059 -16.203 0.0001 -1.072 -0.840
Cholesterol 0076 0.782 0.097 0922 -1.467 1618
Trigl. 0010 0.344 0.029 0976 -0.669 0.688

Table (6): Represents the Coefficients of (M-Estimate- Bi —square) method

model Beta Std.Error t Sig Lower bound Upper bound
constant 93.696 7.869 11.906 0.0001 78.169 109.223
B.sugaer -0.001 0.009 -0.111 0911 -0.018 0016
B.urea 0.100 0.295 0338 0.735 -0.481 0682
BMI 0.002 0.029 0.068 0.945 -0.055 0.059
Creatin -0.969 0.064 -15.140 0.0001 -1.096 -0.842
Cholesterol 0.032 0.855 0037 0970 1655 1.719
Trigl. -0.029 0378 -0.076 0939 -0.776 0717
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Table (7): Represents the Coefficients of (LMS) method

model Beta Std.Error t Sig Lower bound Upper bound
constant 93.766 0.890 105.355 0.0001 92.009 95.524
B.sugaer -0.001 0.002 -0.500 0.617 -0.003 0.001
B.urea 0.114 0.034 3.352 0.0009 0.048 0.181
BMI 0.003 0.013 0.230 0.818 -0.003 0.009
Creatin -0.968 0.007 -138.286 0.0001 -0.982 -0.954
Cholesterol 93.766 0.890 105.355 0.0001 92.009 95.524
Trigl. -0.001 0.011 -0.090 0.928 -0.003 0.001

Table (8): Represents the Coefficients of (LTS) method

model Beta Std.Error t Sig Lower bound Upper bound
constant 88.833 3.582 24.799 0.0001 81.762 95.904
B.sugaer 0.001 0.004 0.250 0.802 -0.006 0.009
B.urea -0.360 0.133 -2.703 0.007 -0.422 0.102
BMI -0.011 0.013 -0.846 0.398 -0.037 0.015
Certain -0.912 0.028 -32.571 0.0001 -0.968 -0.856
Cholesterol 0.175 0.525 0.333 0.739 -0.862 1.211
Trigl. 0.103 0.188 0.547 0.584 -0.269 0.474

Table (9): Represents the Best models selection criteria
Classical Method Robust Method
thod oLs WLS M-Estimate M-Estimate M-Estimate LTS LMS

Criteria Huber Humble Bi-square
MSE 15.85 1.28 28.24 37.24 42.04 24.50 18.51
R’ 0.75 0.86 0.63 0.61 0.61 0.87 0.89
AIC 644.82 85.11 1010.88 1093.99 1129.85 968.40 884.57
AlCc 645.10 85.40 1011.17 1094.28 1130.14 968.69 884.86
BIC 666.20 88.59 27.51 26.96 26.72 27.80 28.36
RMSE 3.98 1.130 6.11 6.48 5.31 4.94 4.30
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Table (10): Represents the Collinearity test

Tolerance 0.798 0.793 0.986 0.742 0.322 0.291
VIF 1.253 1.353 1.014 1.348 3.105 3.438
Table (11): Represents the Test of Heteroscedasticity
Test Chi —square Sig.
White test 6.437 0.011
Breusch- pagan 5.045 0.025
F-Test 7.649 0.010
Notice that all of the testes indicated that there is a problem with Heteroscedasticity.

Result and discussion:

After applying All the methods that is used in this work on the sample data size (n=299) for the cases under
the hyperactive blood pressure. By taking the hypothesis that the (BP: y) depends on the expletory variables
such as {X1=B.S, X2=B.urea, X3=Cr., X4=BMI, X5= Cholesterol and X6=TRI} and comparing their results, the

following important points are concluded below:

1. Table (1) shows all the measurements of descriptive statistics. Since the Descriptive statistics gave us an
overview for the work that we have done.

2. From table (2) both of the variables (x4,x6) have highly significant effects on the response variable. In
addition, the intercept has a highly significant effect. However, the other four variables (x1,x2,x3,x5) appears to
have no significant effects.

3. The output from Table (3) shows that the results of fitting a multiple linear regression model by using (WLS)
to describe the relationship between (BP) and six independent variables. Since the Significance level (P-value)
in the table is less than 0.01, there is a statistically significant relationship between the variables (x2,x4) but x5
is nearly significant at the 99% confidence level. If we put the confidence interval at 95% then the variables (x2,
x4, x5 and x6) will be significance.

4. Tables (4,5,6) shows the result analysis of Robust M-estimate methods by using (Huber humble ,bi-square)
Weights. These results represent that the only variable that has effect on the dependent variable and highly

significant is X,= Creatin and its values is less than 0.01.

[
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5. Table (7,8) shows that the Robust method of (LTS ,LMS ) respectively, in table (7) both of X, X, and Xs are

significant since their values are less than 0.01. In table (8) the most significant variables are X, and X,.

6. In Table (9) we depend on the criteria methods such as (RZ, AIC, AlCc, BIC, MSE and RMSE) to detect the best
method, where WLS approach is the best method by comparing it with OLS method where four method of
criteria are shows us that WLS is better than OLS. As well as in the Robust methods LMS is the best method
since Three of the criteria methods is least by comparing it with the other methods at the end WLS is better than

LMS because Four methods of criteria in WLS is smaller than LMS.

7.Table (10) represents the value of VIF which is (1.06, 1.32, 1.50, 1.42, 1.02, 1.24) and this indicates that there
is no correlation among the (explanatory variables).

8. WLS is the best model among all the other models but in table (11) we can see that the tests shows us that
there are Heteroscedasticity problem. Where WLS was able to remove the effect of heteroscedasticity in the

data.
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